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We study the doping-driven Mott metal-insulator transition (MIT) in the periodic Anderson model set in the
Mott-Hubbard regime. A striking asymmetry for electron- or hole-driven transitions is found. The electron-
doped MIT at larger U is similar to the one found in the single band Hubbard model, with a first-order
character due to coexistence of solutions. The hole-doped MIT, in contrast, is second order and can be

described as the delocalization of Zhang-Rice singlets.
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I. INTRODUCTION

The nature of the Mott transition, i.e., the metal-insulator
transition (MIT) driven by electronic correlations, is a central
problem in physics of strongly correlated electrons systems.
The relevance of the problem was initially emphasized by
Mott! in the 40s, trying to explain why some materials with
odd electrons per the unit cell, such as NiO, are insulators. In
a Mott MIT, a metallic system with a partially filled electron
band suddenly opens an insulating gap. In practice the tran-
sition is usually driven by temperature, applied pressure, or
chemical doping. The origin of the mechanism is in the cor-
relation effects due to the strong on-site Coulomb repulsion
experienced by electrons occupying rather localized orbitals,
such as d in transition-metal oxides or f in heavy fermion
compounds.

The classical example of an experimental system exhibit-
ing a Mott transition is vanadium oxide V,03, which has
received continuous attention since the pioneering work of
McWhan et al.? in the 70s. That compound has a finite tem-
perature first-order metal-insulator transition that terminates
at a high-temperature second-order critical point, in analogy
with the finite liquid-gas transition line in water.

From a theoretical perspective, it is considered that the
Hubbard model (HM), which contains a tight-binding band
plus an interaction term that describes local Coulomb repul-
sion between electrons occupying the same site, is a minimal
Hamiltonian that may capture the basic physics of the Mott
MIT. The most significant work on this model was initiated
by Hubbard? in the 60s, where, starting from the insulating
state at large interaction values, he described how the system
may close the correlation gap as the bandwidth is increased
to values of the order of the Coulomb repulsion energy.
Later, in the 70s Brinkman and Rice,* using a variational
approach, started from the metallic state and showed how it
can be destroyed by increasing correlation effects when the
interaction strength becomes of the order of the bandwidth.
Finally in the 90s the theoretical development of the dynami-
cal mean-field theory (DMFT) (Refs. 5 and 6) allowed to get
new insight on this problem. In the scenario for the Mott
transition realized in the DMFT solution of the Hubbard
model, for low temperatures and moderate interaction, the
half-filled Mott insulator can be driven to a correlated metal-
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lic state through a first-order transition.® This transition can
occur as a function of correlation strength, temperature, or
doping. The solution of the Hubbard model within DMFT
provided not only a connection between the approaches of
Hubbard and Brinkman-Rice by showing how the system
evolves from a metal to an insulator, but also produced a
detailed description of the basic experimental phenomenol-
ogy observed in the V,0; compound.® In addition, it was
later shown that the MIT can be described in terms of a
Ginzburg-Landau scenario’™ with theoretical predictions for
the critical behavior of observables near the second-order
critical point that were eventually confirmed by
experiments. '’

The physics of the Mott transitions, especially those
driven by doping at low temperatures, became of unparal-
leled interest in condensed matter physics with the discovery
of the high-temperature cuprate superconductors'! in the 80s
and, in smaller but also significant measure, by the discovery
of the non-Fermi-liquid behavior in heavy fermion
systems.!? In those systems, the effect of strong correlations
is undisputed, since the active electronic degrees of freedom
involve the localized d and f orbitals. Therefore, these sys-
tems are identified as doped Mott insulators, however, their
phase diagrams and the evolution of their physical properties
cannot be associated to the DMFT scenario for the Mott
transition that was so successfully applied to V,0;.

Besides the Hubbard model, the periodic Anderson model
(PAM) is another minimal Hamiltonian that is often investi-
gated in the context of strongly correlated electron systems.
That model contains two orbitals per unit cell, one local with
on-site Coulomb repulsion and the other noninteracting and
itinerant. At each lattice site, the two orbitals are hybridized.
This model is more realistic than the Hubbard, since it de-
scribes with greater detail the actual situation in real com-
pounds. For instance, in transition-metal oxides where the
overlaps between neighboring oxygen p orbitals provide itin-
eracy to the electrons, while the localized d orbitals of the
transition metal experience the stronger correlation effects.

Despite the higher degree of detail included in the PAM, it
is often assumed in theoretical approaches that the physical
behavior of the PAM would result qualitatively similar to
that of the Hubbard model at low frequencies. That statement
can be mathematically justified in certain parameter regimes,
however, its general validity is less evident
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The DMFT is a theoretical approach that is mathemati-
cally exact in the limit of large lattice dimensionality>®
which has been extensively used to study the Mott transition
in the Hubbard model, and, to a lesser degree, has also been
employed to investigate the physics of the PAM.!3-1¢ There-
fore, in the light of the previous discussion, a natural ques-
tion to address is whether within DMFT the Mott transition
scenario of the PAM is indeed qualitatively similar to that of
the Hubbard model or, if contrary to usual expectations, it
brings about new physical behaviors. This issue has been the
focus of our recent investigations,17 where we showed that in
fact a different type of doping-driven Mott MIT is realized in
the PAM, even in a parameter regime whether it might be
expected that the identification with the Hubbard model may
hold. The present study extends and provides further details
to that work. In particular, we present data that illustrate the
different behavior of physical quantities on the two sides of
the transition, we provide comparisons of the Green’s func-
tions to results using a 7=0 numerical technique, and we
extend the discussion of the physical origin of two transi-
tions. We should clarify that there is a qualitatively different
insulator state that can be realized in the PAM, namely, the
Kondo insulator. It is obtained in the particle-hole symmetric
case, where the total occupation is even (i.e., two electrons
per site). The Kondo insulator is qualitatively different from
a Mott insulator, because it is due to band hybridization ef-
fect and correlations merely serve to reduce the hybridization
gap. This insulator has a temperature-driven crossover to a
metallic state that has been investigated within DMFT using
quantum Monte Carlo (QMC) techniques.'®!° In contrast, the
Mott insulator state that we consider here corresponds to a
state with odd total number of particles and its physical ori-
gin is entirely due to strong correlation effects.

The paper is organized as follows. In Sec. II we introduce
the PAM and justify the choice of the parameter regime. We
also summarize the DMFT equations and provide details on
the numerical techniques we use to solve the associated im-
purity problem. In Sec. III we present the results and discuss
the Mott transitions found in the PAM. In Sec. IV we present
a discussion of the physical origin of the different scenario
for the MIT found in the PAM with respect to the HM. In
Sec. V we present the conclusions.

II. METHODOLOGY
A. Model
The Hamiltonian of the PAM is given by
H=- 2 tij(pz—apja"'p;o-pia) + (Ep - M)E p?-a'pi(r
({ij)o io

+(e;— ,U«)E diod;y + tpdz (diypio+ Pivdis)

+UE (”dn‘%)(”du—%)- (1)

Here p;, and p;, operators destroy and create electrons at p
orbitals on site i with spin o. The p orbitals have site energy
€, and overlap via the hopping term #;;=t to form a band. d;,,

PHYSICAL REVIEW B 80, 035129 (2009)

a0 ¢ %9 9
N B AT

SO D N 25 N D N

p

FIG. 1. (Color online) Schematic representation of the periodic
Anderson model for the case of a one-dimensional chain. At each
site of the lattice, a d orbital (open circle) hybridizes with a p orbital
(full circle) through the amplitude 7,, (dot-dashed line). Two elec-
trons in the d orbital experience a Coulomb repulsion U. The hop-
ping amplitude between the p orbitals at neighboring sites i and j is
t;=t (solid line).

and d operators destroy and create electrons at d orbitals on
site i with spin o. The local d orbitals have site energy €, and
are hybridized to the p orbitals with the constant on-site am-
plitude #,,. U is the energy cost of double occupation of the
d orbitals at each site and u is the chemical potential. A
=€,— €, the difference between the d level and the center of
the p band, defines the bare charge-transfer energy. Figure 1
shows a schematic representation of the Hamiltonian.

The insulator solutions of the PAM have been studied in
literature mostly in the symmetric regime Ay=0, u=0, where
the system is a Kondo (or renormalized-band) insulator. In
the present work, we shall focus on a different and less ex-
plored parameter regime, where the system is in a Mott in-
sulator state. A key difference between these insulator states
is that the former is realized at an even total electron occu-
pation (n,,,=2), while the latter is realized at an odd occupa-
tion (n,=1 or ny=3). Yet, the Mott insulator state may still
be classified as a charge-transfer insulator or Mott-Hubbard
insulator according to the Zaanen-Sawatzky-Allen scheme.?

The action associated with Hamiltonian (1) reads

B (B )
s=-3 [ ar j 47 DG 7Yl 7)
ko Y0 0

B
s | dr[nw)—%Hnmw)—ﬂ, @
i 0

where Y,={d,.prots Yi,=1d5.p},}, and the inverse matrix

propagator 6}51 is given by

iw,+ u—¢€; Iha ) 3)

tpd iwn+/l,—€p—6k

NP

GOo(k’lwn) = (
where ¢, is the Fourier transform of the hopping term ¢. The
lattice Green’s function G is then written using the Dyson

equation G~'= éa' -3, where

S (k,iw,) 0) @

EA,,(k,iwn) = ( 0 0

and X (k,iw,) is the d-electron self-energy. Here we are in-
terested in a magnetically disordered state, thus the spin in-
dex can be dropped. In this case, the lattice Green’s functions
for the p and d electrons are explicitly given by
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t
Gpplkiio,) =0, + .~ €~ &~ " ’
[7[9( lw) lw M EP €k iwn+M—€d_2(k’iwn)
(5)
t2
Gaalloion) = i + 1= €= Ekoiwo,) = o B
n “ ST Sk
(6)

The local Green’s functions are then obtained performing the
integration over momenta,

Ga(iwn) = ]%]E Ga(k»iwn) = J po(G)Ga(G,iw,l)dG, (7)
k

where a=pp,dd and py(e)=2,5(e—¢,) is the free (U=0 and
1,4=0) density of states (DOS) of the p electrons.

The PAM has some simply solvable limits such as of van-
ishing hybridization, f,,=0, or of vanishing correlation
strength, U=0. For the latter case, the PAM describes two
hybridized one-particle bands, which are obtained diagonal-
izing the Hamiltonian and read as

1 —_—
E.(k)= 5(ed+ €,+6—-2u* (-4’ +4t[2,d). (8)

From the many interesting parameter regimes that this
model has, we shall focus our study on a particular one
where the low energy physics of the PAM is a priori ex-
pected to correspond to that of the Hubbard model. Thus, we
consider the case where the localized d orbital is near the
Fermi energy and with an occupation close to 1, while the p
orbital band is well beneath in energy and almost fully oc-
cupied. By virtue of the hybridization term, the d electrons
acquire a finite dispersion and form a narrow band that
crosses the Fermi energy. It has a bandwidth ~t[2,d/A, where
A is the distance between the two hybridized bands, A
~E, —E_>A,, and is subject to strong correlation effects
when the on-site Coulomb term is turned on.

For reference, the solution for the noninteracting case in
the chosen parameter regime is shown in Fig. 2. We set the
units adopting a model semicircular density of states for the
p electrons with half-bandwidth D=2r=1. As we shall see in
the next section, this density of states is actually realized in a
Bethe lattice in the limit of infinite spatial dimensions. In the
upper panels we show the single particle dispersion E. and
the resulting density of states for Ay=1, #,,=0.9, and u
=0.529, which gives a total occupation per site n,, equal to
3. In the lower panel we plot the total occupation n=n,
+n, together with the partial occupation. The plateaux in the
curves signal incompressible states that correspond to insu-
lators. These are observed at n,,,=2 and n,,=4. In the first
case, ny, equal to 2, one has a hybridization gap insulator,
since the band E_ is full and E, is empty. For n,,,=4 the state
is of a full band insulator. For 2 <n, <4 the system is me-
tallic, since the lower band with mostly p character is full
and the narrow band with mainly d character is partially
filled.

We shall now focus on the effects of correlation on such a
metallic case, realized for n,,=3, where the lower electron
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FIG. 2. (Color online) Top left panel: solid lines are the two
branches E.(e) for U=0, Ap=1, 1,,=0.9, and ©=0.529, which
gives n,=3. Top right panel: density of states for the p and d
electrons (dashed and solid lines) for the same model parameters as
in the left panel. Note that the effective distance between the bands,
A=2, results to be larger than the bare value Ay=¢;~€,=1. The
free (U=0 and t[,d=0) DOS of the conduction electrons is semiel-
liptical with a half-bandwidth equal to unity. Bottom panel: particle
occupation n, (solid line), n,, (dashed), and n, (dotted) as a func-
tion of the chemical potential for U=0, Ay=1, and #,,=0.9.

band with mostly p character is close to being full (i.e., is
occupied by two electrons) and the narrow d electron band is
half-filled (i.e., with an occupation n, close to 1). In the
chosen parameter regime, there is a single band crossing the
Fermi energy which has mostly d electron character. So cor-
relations effects will affect it stronger. For values of the in-
teraction U larger than its bandwidth ~t§ 4/ A one may expect
that a correlation gap would open and the system becomes a
Mott insulator. This is the regime where the identification of
the low energy physics of the PAM with the one-band Hub-
bard model may hold.

B. DMFT and the limit of infinite dimensions

To go beyond this qualitative discussion we need to obtain
reliable solutions of the model Hamiltonian in the strongly
interacting regime. We thus recur to the DMFT formulation
where exact numerical methods can be used to solve the
problem.®

The DMFT solution becomes exact in the limit of large
spatial dimensionality’ or, equivalently, large lattice connec-
tivity z. For this limit to remain physical one is required to
rescale the hopping ¢ amplitude as 7/1'z, so that the density of
states py(€)=2;5(e—€,) gives a finite value for the mean
kinetic energy.’ As is well known in DMFT, the specific
lattice structure is not essential and several lattice types
could be used. For instance, the free (i.e., #,,=0, U=0) den-
sity of states of the hypercubic lattice,>!> which is the gen-
eralization of the square lattice to the limit of high z, reads

1 é )
hyper, =— = 9
po" (€) t\,ﬂGXP( 2 )

where € denotes the noninteracting single particle energy.
Another lattice type which is often adopted is the Bethe lat-
tice, whose density of states reads
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1 ——
Po(€)=ﬁv4t2—62. (10)

In the following we shall adopt this type of lattice structure,
as it is better suited for some of the numerical methods that
we shall employ. As unit of energy we set the half-bandwidth
of the Bethe lattice semicircular DOS, D=2r=1. The key
mathematical simplification arising from the z—0 limit is
the locality of the self-energy, i.e., its k independence. Thus,
there is no longer need to keep the momentum label in the
single particle energies of the band structure €, and the en-
ergy € itself is simply kept as the quantum number.

C. Mean-field equations

In the limit of large lattice connectivity z— %, the PAM
can be exactly mapped onto a single impurity Anderson
model supplemented with a self-consistency condition. The
derivation of the DMFT equations has already been pre-
sented in detail elsewhere,?!?? so here we shall just briefly
summarize the main steps and the final expressions.

A direct way to derive the DMFT equations is to apply the
cavity method.® The key idea is to focus on a given (any) site
of the lattice and to integrate out the degrees of freedom on
all the other lattice sites in order to obtain the local effective
action at the selected site. In doing that, one shall also obtain
a self-consistency condition which restores the translational
invariance that was (temporarily) broken with the selection
of a given lattice site. After integration of all sites other than
the one selected, the local effective action is obtained,

B (B )
Sefr = —f de A7 2 (DG (1= 7),(T)
0 0 o

+Ufﬁd[ B ]H (7 1} (11)
TN T)— — n T)— |,
. di K >

where ,={d,.p,} and ¢y ={d.p’} correspond to the two
atomic orbitals of the given (arbitrary) site of the lattice. The
local inverse propagator reads

N iw,+ u—¢€; tha
—1/. n 4
gO (lwn)=( . 2= > (12)
Ipa iw,+u-¢€,-1°G,,
where épp is the cavity Green’s function that encodes the

information of the propagation of electrons in the lattice,
restricted not to return to the local site. These two equations
define the so-called associated impurity problem of the
model.

In order to restore the translational invariance and to ob-
tain a closed set of equations, one has to relate the local
inverse propagator G, to the Green’s function of the original
lattice. In the Bethe lattice this relation is simple:® the
p-electron cavity Green’s function épp becomes the local
p-electron Green’s function, épp=Gpp. From this relation
and Eq. (12), one obtains the self-consistency condition for

the impurity problem. It can be casted only in terms of [G 4
and reads
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tpd

W, + p—€,— tzG[,‘,,'
(13)

In practice an iterative procedure is implemented to solve
the set of DMFT equations: given an ansatz for [Gy],;, and
the fact that the interactions are local and only act on the d
orbital, the impurity many-body problem (11) can be solved
to produce a local d-electron Green’s function G, ;=
—(dd*)s . This defines a local self-energy 3 =[Gy 1w~ G
that allows for the calculation of the local p-electron Green’s
function G,, [Eq. (7)],

[Go ualiw,) = iw, + u— €;—

. pol€)de
Gpp(lwn) = lz
(W, + L — €, - i — —€
o, + U —€— 2(l(’-)n)

(14)

The obtained G, and 3, are then used as input to the self-
consistency condition Eq. (13) to produce a new [G;] ;- This
process is iterated until convergence is reached. Ar the self-
consistent point, the Green’s functions G4, and G,, and the
self-energy 2 correspond to the local propagators of the
original lattice model. Moreover, since in the z— c° limit %, is
local, then all the k-dependent (or e-dependent) propagators
of the original lattice can also be computed from this self-
energy.

It is useful rewrite the local Green’s functions in terms of

the Hilbert transform of the density of states D(§)
=[” depy(e)/(é—€). For the conduction electron Green’s
function G,, we get

2
tpd

- iw, + pu— ed—z(iwn)>
(15)

Gpp(iwn) = 5<iwil e €

and for the d-electron Green’s function G,; we obtain

Guio) :
lw,) =" .
@ lw, + U — €~ z(lwn)

tpd : .
’ { i, + - &—3(iw,) } Gpplicn). (16)
This expression has a transparent physical interpretation:
there are two processes that a d-electron can undergo: either
remain fluctuating at the local site (first term), or fluctuate for
some time, then jump to the p site and propagate, and then
return and fluctuate some more time (second term).

D. Numerical solution

For the solution of the associated impurity many-body
problem (11), one may use a variety of techniques.® Here we
shall employ two numerical methods which are both a priori
exact: Hirsch-Fye QMC (Ref. 23) and exact diagonalization
(ED). The interest of using different techniques is that they
have complementary range of applicability and that they al-
low for a cross-check of the numerical results. The first
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method, QMC, is a finite temperature calculation and is exact
in the statistical sense. The other method is formulated at 7
=0 and relies on a finite-size representation of the local site
environment (i.e., the cavity Green’s function) by a bath of
noninteracting atomic sites connected to the local impurity.
In the limit of large number of atomic sites in the bath, this
approach also becomes a priori exact. Both methods have
already been well documented in the literature,® so here we
shall limit ourselves to briefly provide the relevant technical
details.

To implement the QMC, it is useful to first perform the
integration on the noninteracting local p site in action (13),
so that in the many-body problem the interacting d orbital is
the only explicit degree of freedom. We then solve the im-
purity problem using the standard Hirsch-Fye QMC
algorithm,?® where the imaginary time interval [0, 3] is dis-
cretized in L time slices of width A7=8/L (where B is the
inverse temperature). We set UA7<<1 to limit the systematic
errors introduced by the Trotter decomposition. The preci-
sion of the calculations then basically depends on two re-
maining factors, the statistical error and the criterion for the
convergence of the solution of the DMFT equations. For the
former, we typically perform 10° sweeps. When required, we
may do up to 10° sweeps, such as near the Mott transition, or
to compute the analytic continuation of data to the real axis
using the maximum entropy method.>* The quality of the
convergence is controlled by monitoring the behavior with
iteration number of G,(iw,), the imaginary part of the
d-electron Green’s function at the first Matsubara frequency,
which shows the largest variations. We stop the DMFT itera-
tions when the fluctuations of this quantity become on the
order of the QMC statistical error and remain stable for a few
more iterations. In generic regions of the parameter space we
have studied, the solutions converge in less than 20-30 itera-
tions, but hundreds may be necessary close to a phase bound-
ary.

The ED algorithm is based on the representation of the
cavity Green’s function by finite number auxiliary atomic
sites.® They conform the “bath” or environment of the local
impurity. In general, an infinite number of sites may be re-
quired to faithfully represent the dynamic environment; how-
ever, this is not possible to do in practice. Therefore, one has
to adopt a strategy to best represent the environment with a
finite number of auxiliary sites. One may use two different
“geometries” to represent the bath: either the “chain” geom-
etry, as described in Ref. 25 or the “star” geometry, as de-
scribed in Refs. 26 and 27. In both cases, the effective im-
purity problem consists of a central impurity site, composed
of an explicit d orbital and a p orbital, where, by virtue of
Eq. (12) only the latter is connected to the bath. In practice,
less than ten sites can be dealt with in this method and the
ED is performed at 7=0 using the Lanczos technique, which
is convenient to obtain the Green’s functions. In the case of
the chain, parameters of the auxiliary atomic sites can be
obtained in terms of a continued fraction expansion of the
computed Green’s functions.** On the other hand, in the
case of the star geometry, the parameters are obtained by a x*
minimization of the difference between the computed local
Green’s function and a finite-size parametrization of the
cavity.520
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FIG. 3. (Color online) Density of states for the p and d electrons
(dashed and solid lines) as obtained from ED-DMRG calculations
(with a 40-site chain) at Ay=1, 7,,=0.9, and n,= 3. Top panel has
U=0.5 and ©=0.612. Bottom panel has U=2 and u=1.029. The
arrow indicates the width of the Mott gap Ay;. Insets: imaginary
part of the p- and d-electron Green’s functions. Data are from QMC
at T=1/128 (open symbols) and ED-DMRG (lines). The finite
(zero) value at w,— 0 shows the metallic (insulating) character of
the solution at U=0.5 (U=2).

The ED method can be substantially improved by supple-
menting it with the density-matrix renormalization group
(DMRG) technique.?®-3° Several ED-DMRG procedures for
the solution of the DMFT equations have been proposed
recently.?®30-32 The ED-DMRG method that we use here is
in essence identical to the ED with the linear chain.'-33 Since
the linear geometry is perfectly adapted for the DMRG pro-
cedure, we can “grow” the bath to contain a higher number
of auxiliary sites with respect to the standard ED.*® In prac-
tice, we use up to 40 sites. Nevertheless, we point out that
despite the large number of sites the spectral functions on the
real frequency axis do not become continuous but still show
a discrete multipole structure. We also observe that the num-
ber of poles is roughly similar to the number of sites, but the
spectral weight remains rather concentrated in a relatively
small number of poles, emphasizing the discrete nature of
the Green’s functions. However, this does not prevent that
the agreement on the Matsubara imaginary frequency axis is
usually excellent (e.g., see Fig. 3).

III. RESULTS
A. Mott insulating state

In this section we shall present our results for the Mott-
Hubbard regime. In the Hubbard model, the system under-
goes a Mott metal-insulator transition when the density is
n=1 and the interaction strength U becomes of the order of
the bandwidth.® Here, a similar phenomenon is expected as
U is increased to a value of the order of the effective band-
width at the Fermi energy ~t12,d/ A and keeping n, at about 1.
As described before, the Mott state is realized by setting a
value of the interaction larger than the effective bandwidth
U>r o/ A and keeping the total occupation n=n,+n,=3.
Similarly to the Hubbard model case, in the PAM there is an
on-site Coulomb interaction acting on d orbitals. This inter-
action punishes the double occupation of d sites and conse-
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quently favors the tendency to localization and to magnetic
moment formation of the d electrons.

Notice that we have chosen in the definition of our Hamil-
tonian (1) and Eq. (11) the so-called nonmagnetic form for
the interaction. This is motivated by the fact that we are
interested in the Mott physics of a paramagnetic correlated
state at ny~1, i.e., ng=ny ~1/2. Therefore the interaction
term U(n 1 — %)(ndl— %) approximately cancels at the Hartree-
Fock level. This allows to obtain some immediate physical
insight. The cancellation implies that for low values of U,
where first-order perturbation holds, the interacting density
of states of the model remains essentially identical as in the
noninteracting case (see Fig. 2, upper panels). Therefore, the
position of the correlated narrow band remains approxi-
mately fixed at the Fermi energy. Since the position remains
unrenormalized, at higher values of U one would expect that
the narrow band splits, forming a lower Hubbard band and
an upper Hubbard band, below and above the Fermi energy,
respectively, and both carrying half of the spectral intensity
of the narrow band. At the Fermi energy a large charge gap
would then open and the system becomes a Mott insulator.

1. Opening of the Mott gap

This scenario is in fact borne out in the actual model
solution that is shown in Fig. 3. The data correspond to a
T=0 calculation using the ED-DMRG method with 40 sites
in the bath. The values of the interaction are U=0.5 (upper
panel) and U=2 (lower panel). This latter value of U is suf-
ficient to drive the system to the Mott insulating state. In fact
one may estimate that the critical U should be about twice
the effective bandwidth tid/ A (we shall present later on the
full phase diagram). The insets of the figure contain a com-
parison of the results for the Green’s functions in Matsubara
frequency from ED-DMRG at 7=0 and QMC at the low
temperature 7=1/128. The agreement is very satisfactory.
The ED-DMRG method also provides the propagators in real
frequency; we thus plot the more intuitive DOS in the main
panels of the figure. In the weakly correlated case (upper
panel), the DOS resembles the noninteracting one: at lower
energies —3 < w=-1.5 there is a band with dominant p char-
acter, while at the Fermi energy there is a narrower band with
mainly d character. In the Mott insulating state shown in the
lower panel, the DOS consists of three features: similarly as
before, there is a p-like band at high (negative) energies.
However, the main qualitative difference is that now the nar-
row band at E is split in a lower Hubbard band and an upper
Hubbard band, respectively, below and above the Fermi en-
ergy. The Mott-Hubbard character of the transition in this
parameter regime is seen from the fact that both lower and
upper Hubbard bands have dominant d character. Moreover,
one also observes that the p component is not negligible,
especially in the lower Hubbard band.

We should also mention that the apparent multiple peak
structure of the main three features appearing in the DOS is
merely due to the discreteness of the finite number of sites
used to describe the environment in the ED technique.
Though we are using as many as 40 auxiliary sites in the
environment, the discretization effect still remains rather no-
ticeable. Nevertheless, the splitting of the narrow band at the

PHYSICAL REVIEW B 80, 035129 (2009)

4
=
8
83* ...... N
3
g2k e e
P e _-
'%1* '.;,/ 4
3 L
Quo 2
3+ ]
K2r L BI MI 7
o= & ]
m N 7
O L n Il

FIG. 4. (Color online) Top panel: n, (solid line), n, (dashed
line), and n (dotted line) as a function of the chemical potential
for U=2. Data are from QMC calculations at Ay=1, #,,=0.9, and
T=1/64. A large Mott gap opens at U=2 around 0.7su=<1.2.
Bottom panel: charge compressibility, k=dn/du versus u for the
same model parameter as in the top panel.

Fermi energy with the consequent opening of a large Mott
gap Ay that signals the Mott insulator state is clearly ob-
served.

The transition from metallic to insulating state with the
consequent opening of the Mott gap can be also observed
from the behavior of the partial p, d, and total particle occu-
pation n,, ng, and ny,, respectively, as a function of the
chemical potential. In Fig. 4 we show these quantities and
their first derivative x=dn/du proportional to the charge
compressibility, for U=2. The plateaux observed in the oc-
cupations, with the respective vanishing of the compressibil-
ity for n,=0 and n=4, correspond to the completely
empty or completely full band insulators. The case n,,=2
corresponds to the hybridization band insulator, similar to the
one already discussed in the noninteracting case. However,
in contrast to the results for the noninteracting case, the
strong value of the interaction creates additional plateaux in
the n(u) curves. The new plateaux occur when the total num-
ber of particles is exactly n,,=3, which is odd and signals
the Mott state.

An important aspect that we should mention is that the
Mott insulator state occurs where the correlated d site has an
occupation close to 1, but not exactly unity. This can be seen
is Fig. 4 (top panel), where the Mott plateau occurs at ny
=1+wv (and n,=2-v), with »=0.13. The specific value of v
depends on the hybridization and therefore one can consider
it as a measure of the mix-valence character of the Mott
insulating state. It is the fotal number of particles exactly
equal to three (or one hole) what is required for the onset of
the Mott insulator state. This implies that in this model
where the mixed p—d valence is explicitly included through
the hybridization, the Mott localization occurs for a “com-
posite” object which has a mixed p and d character.

2. Size of the Mott gap

The size of the Mott gap is naively expected of be of
order U since it should mostly reflect the energetic cost to
doubly occupy the d orbitals. However our results show that
the size of the Mott gap Ay, may be substantially smaller
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FIG. 5. (Color online) Top panel: size of the Mott gap Ay as a
function of U for different positions of the p-electron band ¢,
=-6,-3,-2,—1 (top to bottom). Lower panel: mix-valence charac-
ter v=ny—1 as a function of U for the same position of the p band
as in the upper panel (bottom to top). The results are obtained from

ED.

than the bare value U. In Fig. 5 we plot Ay as a function of
U, for several values of the bare position of the p-band €,
which amount to increase the charge-transfer energy A,. As
the energy of the p orbitals is shifted down to larger (nega-
tive) energies, the effective bandwidth of the narrow band at
the Fermi energy decreases. In addition, the p-electron band
becomes essentially full with n,—2 as €,— - (and keeping
t,q fixed). This implies a decrease in the mix-valence char-
acter of the electrons at the Fermi energy v as shown in the
lower panel of Fig. 5. In this limit the size of the Mott gap
approaches the “bare” value Ay;= U. However, it is interest-
ing to observe that the smaller values of €, lead to a substan-
tial renormalization of the size of the expected Mott gap.
This effect can be thought as due to an effective screening
that the p electrons provide, or, in more naive terms, because
the electrons only “feel” the repulsive term U during the time
they spend on the d orbital, but not when they visit the p site.
So as the mixed p—d character is increased, the effect of the
U is renormalized downward.

For completeness we show the behavior of the imaginary
part of the Green’s functions at low Matsubara frequency. In
Fig. 6 we present numerical results for several insulating
states obtained varying the chemical potential within the
Mott plateau. The data were obtained with both QMC and
ED-DMRG, so also serve to illustrate the good agreement
between the two methods. Note that the imaginary part of
both the p- and the d-electron Green’s functions goes to zero
at w,— 0. By analytic continuation this implies that the p-
and d-electron DOS vanish at the Fermi level, consistent
with the insulating character of the solutions. Accordingly,
when the chemical potential u is varied within the Mott pla-
teau, the p- and d-electron DOS simply experience a rigid
shift in energy. However, as we shall see later, there are
dramatic changes in the DOS line shapes as the system turns
metallic upon doping.

B. Doped Mott insulator

So far we have shown that the model does have a Mott
insulator state which similarly as in the Hubbard model case

PHYSICAL REVIEW B 80, 035129 (2009)

E04f ]

FIG. 6. (Color online) Top panel: imaginary part of the
d-electron Green’s functions in the Mott state, from ED-DMRG (for
a large finite cluster of 30 sites) at 7=0 and pu
=0.729,0.829,0.929,1.029 (solid, dashed, dotted-dashed, and dot-
ted lines, respectively). Circles are the same quantity from QMC at
T=1/64. Lower panel: imaginary part of the p-electron Green’s
functions; all model parameters are the same as in the top panel.

develops two incoherent Hubbard bands above and below
the Fermi energy. However, unlike in the Hubbard model
case, the size of the gap, i.e., the separation between the
Hubbard bands, may be substantially smaller than U if the
hybridization is relatively high. In the following section we
shall proceed to dope this Mott insulator with & carriers, with
6=n—3. As was already reported in Ref. 17, we will ob-
serve that the insulator to metal transitions that can be ob-
tained by either particle, 6>0, or hole doping, §<0, are
qualitatively different. The former will essentially reproduce
the known scenario for the Mott MIT that is realized in the
DMFT solution of one-band Hubbard model.®33-3% This was
to be expected since we have tuned the parameters of the
model to the regime where the identification of the low en-
ergy physics of the PAM and the one-band Hubbard model
was expected to hold.’® However we shall see that, rather
surprisingly, the hole doping insulator to metal transition
bears out a qualitatively different scenario.

1. Particle doping (6>0)

In this section we shall first describe the MIT driven by
particle doping and demonstrate that it realizes the same
first-order transition scenario as the one in the single band
Hubbard model. The metallization of the Mott insulator is
most directly seen from the changes that take place in the
density of states. In Fig. 7 we show the evolution of that
quantity for the p- and d-electron components as a function
of doping. The data are obtained from analytical continuation
of QMC results at U=2 and low temperature. To compute
the analytical continuation using the MEM, we used over 10°
sweeps, so to minimize the uncertainty due to statistical er-
rors. In the left top panel we see the DOS for the case where
the chemical potential u is close to the upper energy edge of
the Mott gap, therefore still in the insulator state with 6=0.
The left bottom panel shows the metallic state that is ob-
tained when the chemical potential enters the upper Hubbard
band, doping the parent Mott insulator with particles. We
observe a broad peak at the Fermi energy and a strong trans-
fer of spectral weight from the lower to the upper Hubbard
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FIG. 7. (Color online) Density of states for the p and d electrons
(dashed and solid lines) at U=2, Ay=1, and 1,,=0.9. Left: DOS
from analytically continued QMC data at 7=1/64. Top panel has
#=1.079 corresponding to a Mott insulating state (5=0). Middle
panel has u=1.244 corresponding to small doping 6=0.023. Bot-
tom panel has w=1.317 corresponding to high doping §=0.26.
Right panels: comparison of DOS from ED-DMRG and QMC data
(thick and thin lines, respectively) at §=0.264.

band. The d orbital character remains dominant in the DOS
upon doping. In the left middle panel we show the DOS in
the region of small doping, very near the transition. The data
reveal that both the p- and d-electron components of the
DOS show a narrow quasiparticle peak at the Fermi energy
flanked by the incoherent upper Hubbard band at higher en-
ergies. This coherent peak carries a small fraction of the
spectral intensity which is of order &. In addition, from the
enhancement of the slope of the self-energy, one observes
that the quasiparticles acquire a heavy mass. All these fea-
tures are consistent with the MIT scenario found in the one-
band Hubbard model.

The right panels of Fig. 7 show a comparison of QMC
and ED-DMRG results for the DOS at high doping. The
discrete peaks in the ED-DMRG data are due to the finite
number of sites in the effective bath. Nevertheless, the agree-
ment in the distribution of the spectral weight of the two
methods is very satisfactory. The comparison of the data also
allows for a nontrivial benchmark of the numerical results
and is a useful illustration of the advantages and disadvan-
tages of the different numerical techniques. ED-DMRG is
exact but has the drawback of discrete poles structures that
persist even for many effective atoms in the bath. QMC, in
contrast, produce smooth spectra but their numerical preci-
sion cannot be guaranteed due to the uncertainties in the
process of analytic continuation of data to the real frequency
axis.

In Fig. 8 we present the d-electron density of states p,(w)
for several values of particle doping. The data show the pres-
ence of the quasiparticle peak evolving in between the two
Hubbard bands. One may see that though the data show a
reasonable systematic evolution some details are beyond the
precision of the technique, such as the precise size of the gap
and the form of the band edges.

The most substantial confirmation that the particle
doping-driven MIT scenarios in the PAM and in the HM are
in fact qualitatively analogous comes, however, from the ob-
servation of the hysteresis effect in the particle number n(w)
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FIG. 8. (Color online) Density of states for the d electrons from
QMC data at U=2, Ayg=1, 1,;,=0.9, and T=1/64. The particle dop-
ing is 6=0, 0.01, 0.02, 0.04, 0.11, 0.21, and 0.32 (bottom to top).

curve. The hysteresis is a hallmark of the first-order nature of
this doping-driven transition and it was observed and studied
in detail in the Hubbard model.3*33373 We also find it here
in the PAM and it is most clearly appreciated in the behavior
of n, versus w. There is a strong dependence of the n,(u)
curves as the temperature is lowered signaling strong corre-
lation effects being active with very low energies. In Fig. 9
we show the occupation of the d electrons as a function of
the chemical potential p obtained from QMC. The main
panel shows a detail of the QMC data at the low temperature
T=1/64, where the hysteresis loop can be clearly seen.
These results were verified using the 7=0 ED technique.

In order to observe the hysteresis cycle, we use as a seed
for the iterative procedure the converged solution from the
previous set of parameters.’*3” Thus, the solutions can be
continuously “followed” in parameter space, until it shows a
sudden jump. The discontinuous jump occurs at the approxi-
mate position of the spinodal lines.*® Similarly as in previous
studies on the Hubbard model,?’ the hysteresis defines a re-
gion of parameters where two solutions of the DMFT equa-

FIG. 9. (Color online) Hysteresis loop for the n,(u) curve at the
upper energy edge of the Mott insulating state. Data are obtained
from QMC for T=1/64 at U=2, Ay=1, and t,,=0.9. The arrows
indicate the solution obtained by following the insulating (circles)
and the metallic solution (squares). Inset: root mean square (rms) of
the imaginary part of the d-electron Green’s function value at the
first Matsubara frequency as a function of the chemical potential. It
shows the enhancement of the fluctuation near the two critical val-
ues of chemical potential, where the continued solution ceases to
exist.
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FIG. 10. (Color online) Main panel: imaginary part of the
d-electrons Green’s function as a function of the Matsubara fre-
quency for Ayp=1, 7,,=0.9, U=2, T=1/64, and u=1.234 corre-
sponding to tiny particle doping d=n,,—3=0.01. Open symbols
correspond to the metallic solution, while full symbols to the insu-
lating one. Inset: the correspondent d-electron density of states
pa(w). Thick line is the metallic solution; thin line is the insulating
one.

tions can be stabilized. The true physical transition should
occur where the free energy of the solutions cross. The pre-
cise determination of that line is beyond the scope of our
present study and probably would require further refinement
of the numerical techniques due to the very low energy
scales involved.

One key point that provides further support to our results
is the critical slowing down phenomenon observed in the
QMC calculation at the phase boundaries of the coexistence
region.>*% This phenomenon is characterized by an en-
hancement of the number of iterations required to achieve
self-consistency and also by an enhancement of the statistical
Monte Carlo fluctuations that reveal the shallowness of the
energy landscape when two solutions merge. The root-mean-
square deviation of the lowest frequency component of the
d-electron Green'’s function is plotted in the inset of Fig. 9 as
a function of w for the low temperature 7=1/64. As we
approach the phase boundaries of the coexistence region, we
can see that the root-mean-square deviation increases. Start-
ing with an insulating solution, if we increase the chemical
potential, the rms increases until we reach a critical value of
M, where the insulating solution disappears (open circles).
Similarly, starting form a metallic solution at low doping, if
we reduce the chemical potential, the rms grows until a criti-
cal value of u, where the metallic solution disappears (open
squares).

Evidently, the coexistence of solutions can also be ob-
served from the behavior of other quantities, such as the
double occupancy, or the low frequency part of the Green’s
functions. The latter is shown in Fig. 10 for both p- and
d-electron components. These results support the claim that
the MIT scenario for 6>0 in the PAM is completely analo-
gous to the one found in the Hubbard model
investigations.33-3

2. Hole doping (6<0)

In the previous section we showed that upon particle dop-
ing, 6> 0, the Mott MIT in the PAM realizes the same physi-
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FIG. 11. (Color online) Density of states for the p electrons
(dashed line) and d electrons (solid line) for U=2, Ayp=1, and ¢,,
=0.9. Left: DOS from analytically continued QMC data at T
=1/64. Top panel has ©=0.829 corresponding to a Mott insulating
state (6=0). Middle panel has u=0.529 corresponding to small
doping 6=n,;—3=-0.04. Bottom panel has ©=0.329 correspond-
ing to high doping 6=-0.28. The QMC data show the appearance
of a broad quasiparticle peak (ZRP) at the Fermi level, in addition
to the lower and upper Hubbard bands (LHB, UHB) at high ener-
gies. Right panels: comparison of DOS from ED-DMRG and QMC
data (thick and thin lines, respectively) at the heavy doping &
=-0.28. The ED-DMRG data are obtained using an environment of
30 sites.

cal scenario as the one observed in the single band Hubbard
model. While in the latter the particle-hole symmetry implies
an identical transition for <0, we shall see that this is not
the case in the PAM. A key point to appreciate is that we
shall keep all model parameters fixed, with the obvious ex-
ception of the chemical potential, which controls the occu-
pation. Therefore, if the chosen model parameters led, for
6> 0, to the identification of the PAM with the HM physics,
then one may also expect that this would be the case for &
<0 as well. Rather surprisingly this turns out not to be the
case.!” In this section we shall describe the main physical
behavior of the model for the hole doping-driven MIT, and in
the next we shall argue about the origin of this unexpected
result.

We begin by showing the effect of hole doping in the
DOS. In Fig. 11 we plot the change in the p and d compo-
nents of the DOS as the system evolves from Mott insulator
to a hole-doped metallic state (left panels, top to bottom). In
the insulator state we observe that the chemical potential is
located within the correlation gap, and the lower and upper
Hubbard bands can be well appreciated. As we already dis-
cussed before, in this Mott insulator state the DOS at low
frequencies has mostly d electron character, since the d or-
bital was initially located at the Fermi energy. Upon hole
doping, the chemical potential moves within the lower Hub-
bard band. The metallization produces a wide and strong
quasiparticle peak at the Fermi energy. At small doping, the
low frequency part of the spectrum has a characteristic three
peaks structure: the lower Hubbard band around w~-0.4,
the quasiparticle peak that crosses the Fermi level, and the
upper Hubbard band at w~ 0.8 An interesting aspect to ap-
preciate is that the quasiparticle peak has, as before, a larger
d character, but, in addition, now it also has a substantial
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FIG. 12. (Color online) Density of states for d electrons for
several values of hole doping from analytically continued QMC
data at U=2, Ay=1, 1,,=0.9, and T=1/64. From bottom to top, the
hole doping is 6=0, —-0.01, —0.03, —0.04, —0.09, —0.15, and —0.28.

p-electron component. We shall see that this aspect will be
consistent with the interpretation of the quasiparticle peak
now emerging not from mere delocalization of d electrons as
before, but from the delocalization of a composite object that
involves a p-hole and a d-electron spin.

We can also observe a transfer of spectral weight, with an
increase in the relative intensity of the lower Hubbard band
plus quasiparticle, at the expense of a decrease in the upper
Hubbard band. The structure that is seen below w=-1.5
corresponds to the fully filled band which remains with pre-
dominantly p-electron character. The results shown were ob-
tained with high quality QMC data (at least 10° sweeps to
reduce the statistical errors) and performed the analytic con-
tinuation to the real axis using the maximum entropy
method.?*

In the right panels of Fig. 11 we present a comparison of
QMC and ED-DMRG results for the DOS at heavy doping
6=-0.28. Similarly as before (cf. Fig. 7), the apparent mul-
tipeak substructures of the ED-DMRG results are not physi-
cal and only due to the discrete number of poles that result
from a finite number of atomic sites in the auxiliary bath.
Compared to the standard ED, this method produces much
smoother spectra with greater detail due to the dramatic in-
crease in the number of poles. However, as is also evident
from the data, the discreteness due the finite-size representa-
tion of the bath remains a shortcoming of the method. The
overall comparison of the two methods remains, neverthe-
less, very satisfactory and serves to illustrate their relative
advantages and disadvantages.

To complete this study, we show in Fig. 12 the detailed
evolution of the quasiparticle peak at the Fermi level plus the
Hubbard bands as a function of doping. The data correspond
to the d-electron density of states obtained from analytic con-
tinuation of QMC data.

The emergence of a quasiparticle peak at the Fermi en-
ergy for the hole-doped case may seem, at first sight, similar
to the metallic state obtained from particle doping. However,
this will not turn to be the case'’*! and the physical origin of
the two quasiparticle excitations will be shown to be quali-
tatively different. The reason for this unexpected asymmetry
will be discussed in the next section.

In order to fully underpin the nature of the order of the
hole-doped transition, we now look for hysteresis effects.
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FIG. 13. (Color online) Partial occupation of the d electrons, ng,
as a function of the chemical potential u at U=2, Ag=1, and 1,4
=0.9. Data are obtained from QMC calculations. Main panel has
T=1/128. No trace of coexistent solutions is found. Inset has T
=1/16, 1/32, and 1/64 (dotted, dashed, and full lines). Notice the
strong temperature dependence on the particle-doped side of the
transition (where only one branch of the hysteresis cycle at T
=1/64 is shown) and the much less temperature dependence on the
hole-doped side of the transition.

Thus, as we did before, we continuously follow the solutions
in parameter space. First, we start from the insulator and
lower the chemical potential until we obtain a significantly
doped metal; and then, we start from the metal and increase
o until we reach again the insulator. Neither our QMC nu-
merical simulations nor the ED-DMRG studies showed any
indication of hysteresis effects. The QMC data down to T
=1/128 are shown in Fig. 13. Compared to the results for
particle doping (inset), the present ones show a negligible
temperature dependence. Thus, up to our current numerical
capacity we have to conclude that the metal-insulator transi-
tion in the hole-doped case is of second order. As no evi-
dence of coexistence has been found, neither in finite or
zero-temperature calculations, we are led to the conclusion
that the hole-doping-driven transition at 7=0 is continuous,
i.e., has a second-order character. Thus, it is qualitatively
different from the particle-doped case, and, consequently,
also qualitatively different from the Hubbard model scenario.
Of course, we cannot rule out the eventual existence of tiny
energy scales (which may modify our proposed scenario)
which remain beyond the numerical precision of our meth-
odology. This issue cannot be resolved nor by ED or ED-
DMRG data due to the finite frequency cutoff set by the
finite size of the clusters to diagonalize. Resolving this issue
would probably require numerical renormalization group
(NRG) study. However this is not fully clear since NRG
method requires a good separation of energy scales, which is
not the case here.

IV. DISCUSSION

Our results for the doping-driven MIT, which arise from
either particle or hole doping of the Mott insulator, show a
qualitative asymmetry, thus questioning the expected map-
ping of the PAM onto the Hubbard model. In this section we
shall address in more detail this issue from the perspective of
the physical nature of the two MIT taking place in the PAM.
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FIG. 14. Phase diagram of the PAM in the U-u plane that maps
the Mott insulator (MI) and its boundaries with the metallic state
(M). The boundary between the metal and the band insulator (BI) at
=4 1s also shown. The boundary lines are for 7=0 ED star
geometry calculations at Ap=1 and ,,=0.9. The dashed line de-
notes the region of the parameters where there is coexistence be-
tween two solutions, one metalliclike and the other one
insulatinglike.

A. Phase diagram

To begin, we map out the phase diagram in U-u param-
eter space to explore the respective ranges of the first- and
the second-order transitions. Our results are summarized in
Fig. 14, which was constructed using finite 7 quantum Monte
Carlo and 7=0 ED data. The latter were obtained using the
“star-bath” geometry, which we found better suited®?¢ than
the “chain-bath” geometry to study the possible coexistence
between the metallic and the insulating regions.

The phase diagram in the U-u plane shows a central
V-shaped Mott insulator region with the correlated metallic
phases for particle and hole doping, respectively, to the right
and to the left. A threshold value for the strength of the
interaction U (tip of the V-shape boundary) is required to
obtain a Mott insulator state. This threshold depends on the
value of the “band-structure” parameters A, and t,,. This
feature is analogous to the existence of critical value of the
ratio U/D in the one-band Hubbard model.®

The central V-shaped Mott insulating region shows a re-
markable asymmetry comparing the hole and the electron
sides. In contrast, in the one-band Hubbard model, due to the
particle-hole symmetry, the V-shape onset of the Mott insu-
lator is symmetric with respect to the tip and behaves as
U.~U, =2u, where U, is the value of the interaction at
which the insulator disappears.® In the PAM, the transition
line to the particle-doped side behaves as well like U,
~ const+2u. However, the transition line to the hole-doped
metal is almost vertical.

We also mapped out the order of the transition along the
boundary lines. Upon hole doping, both QMC calculations
down to the low temperature 7=1/128 and ED calculations
at T=0 show no trace of coexistent solutions along all the
transition line, indicating a second-order transition. On the
other hand, upon particle doping, the dashed line in the phase
diagram displays the region of the parameter space where,
for sufficient low temperatures, an insulating state coexists
with a metallic state. In fact within ED method at 7=0 we
find that the DMFT equations have two different solutions all
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along the transition line. Within QMC, and down to the low
temperature 7=1/128, we found a coexistence region only
for a sufficiently large strength of the repulsive interaction U
(approximately U= 2 for our specific choice of parameters).
However, for smaller values of U, the phase boundary re-
mains strongly dependent on temperature. This suggests that
the temperature below which there is a coexistence between
metallic and insulating state decreases rapidly approaching
the tip of the V shape. This should be expected, since the two
boundary lines, to holes and particle-doped metal, eventually
merge at the tip. Similarly, we also expect the 7=0 width of
the coexistent region to become narrower as one approaches
the tip of the V. However, obtaining detailed and precise
numerical data there turned out to be beyond our methods’
capabilities.

We note that at the Mott insulator state (6=0) the occu-
pation of the conduction p electrons is almost saturated at
n,=2-v (with »=0.1). On the other hand, the occupation of
the nondispersive d electrons which carry strong magnetic
moments due to the on-site repulsion is close to 1, with n,
=1+v (cf. Fig. 5). Therefore, there is only a small number
~v of p holes available to screen a number of order 1 of d
magnetic moments. Therefore, a natural issue to consider is
whether the physics associated to the “exhaustion problem”
of Nozieres”*>*3 [see also related works on the Kondo lattice
model*** and on the PAM (Refs. 46—48)] may play a role in
the different transitions at & greater or smaller than 0.

An important point to realize is, however, that the exhaus-
tion situation is even more extreme on the particle side than
on the hole-doped side. In fact, while the number of d elec-
trons remains always of order 1 on both sides, the number of
available p holes is substantially smaller for 6>0 with re-
spect to the 6<<0 case. Nevertheless, the Hubbard-like first-
order transition scenario takes place only on the particle-
doped side. In other words, the PAM metal-insulator
transition scenario is analogous to the one in the Hubbard
model when the PAM is even deeper in the exhaustion limit
(6>0,n,~2). This implies that while exhaustion should
play a role, it is not obviously responsible for the failure of
the mapping of the PAM onto the HM for 6<<0.

B. Nature of doped carriers

We now address the issue of the physical nature of the
metallic states in this system. Although the low frequency
parts of the DOS of both particle- and hole-doped metals
have a similar three peaks structure with dominant d charac-
ter, they realize physically different states. For instance, their
charge compressibility has a very contrasting temperature
dependence. In Fig. 15 we show the derivative of the total
occupation with respect to the chemical potential, «
=dn,,/ dp (an observable proportional to the compressibility)
as a function of doping. In the Mott insulator (6=0) « is
zero, indicating the incompressible Mott state. As expected,
upon doping, k increases, indicating that the system becomes
compressible. For small particle doping, the compressibility
rapidly increases with the temperature, similarly as in the
one-band Hubbard model case. Upon hole doping, « is much
less dependent on temperature.
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FIG. 15. (Color online) k=dn,,/du as a function of doping &,
for several values of the temperatures T=1/16,1/32,1/64 (circles,
squares, and triangles, respectively). Data are obtained from QMC
calculations at Ag=1, £,;=0.9, and U=2. On the particle-doped
side, we followed the metallic solution.

In the PAM the physics of the metallic states is usually
discussed in terms of the screening between the p conduction
electrons (or holes) and the magnetic moment of the local d
electrons. In fact, at each lattice site a p and a d electron may
form a local singlet, which is the underlying idea in the ar-
gument of Zhang and Rice*® (ZR) in the context of high-
temperature cuprate superconductors. However, if on the par-
ticle side of the Mott MIT we have argued that there are
essentially no available holes, then the question is, what is
screening the d moments so to produce a normal (but heavy)
Fermi-liquid metal, analogous to the one in the doped Mott
insulator in the Hubbard model?

The answer to this question is that, similarly to the one-
band Hubbard model case, the d electrons are screening
themselves. In fact, the local ZR singlet formation does not
take place for 6>0 simply because there are no holes avail-
able for screening. Nevertheless, despite the high filling of
the p orbitals, the strong hybridization ¢, still allows for
delocalization of the d electrons, through charge fluctuations
across the p sites, with an effective amplitude teff~t12,d/ A.
The key physical point in this process is that since the p
orbitals are almost full, they have a negligible local magnetic
moment, so these charge fluctuations take place without sig-
nificant magnetic p-d coupling. Therefore the magnetic
phase coherence of the d electrons is preserved and, in con-
sequence, a superexchange mechanism between neighboring
d sites occurs. Thus, from the point of view of the d elec-
trons, they have strong magnetic moments, they delocalize
keeping their quantum mechanical phase through essentially
nonmagnetic p sites, and therefore also experience antiferro-
magnetic correlations with nearest-neighbor d sites. These
physical ingredients are evidently also realized for the carri-
ers in the single band Hubbard model. Therefore we can now
rationalize the underlying mechanism for the mapping of the
PAM onto the one-band Hubbard model at 6>0, cf. Fig.
16(a).

On the other hand, the situation is very different as the
chemical potential is lowered to dope holes into the system.
There, the number of available holes becomes more signifi-
cant and they can lock with the robust d-magnetic moments
to form local ZR singlets. However, when the d electrons of
these singlets want to delocalize, i.e., hop to the neighboring
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FIG. 16. (Color online) Schematic representation of the different
types of carriers that occur upon either (a) particle (6>0) or (b)
hole (6<<0) doping of the Mott state.

sites and eventually form a quasiparticle band, they com-
pletely lose the information of their spin phase, thus the an-
tiferromagnetic correlations between neighboring d do not
build up. In consequence, Hubbard model like physics does
not take place and the nature of both the MIT and the ensu-
ing correlated metallic state becomes fundamentally differ-
ent. That is the key physical reason why the mapping of the
PAM with a one-band HM is no longer valid, cf. Fig. 16(b).

In order to substantiate the previous qualitative discus-
sion, we show in Fig. 17 the d and p local moment formation
as a function of doping for a large strength of the interaction
U and for a value slightly above the tip. The local moment
formation is defined as

(M) = (g = 1)) = Ny = Anggia)),s (17)

where a=p,d. Notice that the difference between the particle
occupation n and the moment directly measures the double
occupancies of the sites. In the Mott insulator (§=0) the
local moment of the d electrons, {(m3)?), is large because the
d sites are predominantly singly occupied due to the effect of
U. On the other hand, the p band is almost fully occupied,
and thus the local moment of the p electron, ((m;)2>, is sig-
nificantly smaller. As one dopes the Mott insulator with par-
ticles or holes, the relative distribution of the local moments
among both p and 4 sites is strikingly asymmetric. Upon
particle doping, 6>0, ((mf,)2> becomes even smaller, since
the occupation of the p band gets saturated. On the other
hand, the d moment decreases more rapidly (and linearly)
with the doping, since the charge fluctuations between the
single occupied and double occupied d states increase.
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FIG. 17. (Color online) Top panel: {(m3)?) (circles) and ((m;)2>
(squares) as a function of doping & for Aj=1, #,,=0.9, U=2 (full
symbols), and U=1.2 (open symbols). Bottom panel: <mlz)mfi) as a
function of doping ¢ for the same values of the parameters as in the
main panel. The results are obtained with ED with star geometry.
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Therefore these results support the view that for the particle-
doped side of the transition the p sites are magnetically inert
and, consequently, the d electrons screen themselves as they
form a heavy mass metal. This heavy metal paramagnetic
state is physically analogous to the one realized in the Hub-
bard model case. For the hole-doped metal, §<0, the
p-electron local moment, ((m;)2>, increases linearly with the
doping because holes are mostly added to p sites. In contrast,
the opposite behavior occurs for the d local moment, which
slightly linearly decreases with hole doping. Thus, the in-
crease in the magnetic character of p electrons is consistent
with our argument for the formation of local singlets in the
hole-doped case.

To fully underpin our hypothesis we compute the mag-
netic moment correlation between the d and p sites,

(m;mé) = <(ndT - ndl)(in - nm»- (18)

The results are shown in the bottom panel of Fig. 17. They
illustrate that in fact on the particle-doped side the magnetic
correlations are negligible, however, on the hole doped side
they increasingly grow as the chemical potential moves into
the lower Hubbard band. The growth of the expectation
value is commensurate with the increase in hole doping and
signals that the doped p holes bind magnetically to the local
d-electron magnetic moments. This represents the formation
of the equivalent to Zhang-Rice singlets in the present model
that only occurs at §<<0.

C. Formation of Zhang-Rice-type singlets

The origin of the two different MIT scenarios and the
resulting correlated metallic states can also be argued from
an energetic point of view. The doping introduces new states
inside the Mott gap Ay, which is renormalized by the hy-
bridization 7,,. These states are a mixture of p and d states.
An estimate of the energy gain of the Zhang-Rice singlet
formation is

2
Eg~ V(1—V)A—i'”"A—M. (19)
This results from the magnetic energy gain from the hopping
of a p hole (2—n,=v) on a d site singly occupied (1-v). We
should compare the above binding energy with the delocal-
ization energy of a d electron between two neighboring d
sites, which is proportional to>°

I 7
Egg~ (1~ V)ZK% =(1- y)“Uff. (20)
This results from the virtual hopping of a d electron to its
nearest-neighbor d site (i.e., through two p sites). A priori
this gain is of order 1, since the d sites are approximatively
all singly occupied and 1-wv electrons participate in the su-
perexchange process.”! In fact, in the region of parameter we
are investigating, the parameters 7,4, A, and U are of order 1.
Therefore, the energy gain in the delocalization of a d elec-
tron [Eq. (20)] is of order (1-v)>.
Upon particle doping, the energy gain of singlet formation
(19) is of order v(1-v), thus for small but finite v, it is much
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FIG. 18. (Color online) Phase diagram of the PAM in the U-u
plane that maps the Mott insulator and its boundaries with the me-
tallic state. Data are for #,,=0.9 and Ay=1,2,3, ie., €,=-1,-2,
-3 (solid, dashed, and dotted lines). Data are obtained with T=0

ED calculations.

smaller than the spin-exchange energy gain (20). Thus we
can understand that for particle doping the spin-exchange
energy gain dominates on the energy gain of singlet forma-
tion. This implies that the metallic state realized upon par-
ticle doping is due to the delocalization of mostly d elec-
trons. Therefore the d electrons play the same role as the
single type of carriers in the single band Hubbard model and
produce a qualitatively similar MIT scenario.

On the other hand, upon hole doping, the energy gain of
Zhang-Rice singlet formation can be substantial. In fact, in
our region of parameters, A is of the same order of Ay;, and
the partial cancellation of the denominator in Eq. (19) ex-
plains that for a small but finite v (which is controlled by the
hybridization), the energy gain of singlet formation in the
hole doped transition case dominates on the spin-exchange
energy gain. Thus we can understand that, upon hole doping,
the ensuing metallic state is due to the delocalization of these
composite objects. The nature of this metallic state has been
studied in detail in our recent work*! where we found that it
severely deviated from the Fermi-liquid paradigm. The
physical reason is that the delocalized holes undergo a strong
magnetic scattering from the local magnetic moments as they
hop from site to site. Thus no coherent behavior for hole
propagation is realized, at least down to very low tempera-
ture scales, leading to the observed non-Fermi-liquid charac-
ter.

D. Restoring the mapping of PAM onto Hubbard model

We have shown that the new physics in the PAM with
respect to the Hubbard model comes from the local coupling
between the p and d electrons. Thus we expect that disfavor-
ing this binding may restore the validity of the mapping on
the hole-doped side of the MIT. To test this hypothesis, we
lower the energy position of the p band, €, (i.e., we increase
the charge-transfer energy A,). We already noticed in Sec.
IIT A that upon increasing the bare charge-transfer energy
Ay=€,—¢€,, the Mott gap approaches the bare value U and
the mix-valence character of the electrons is in fact de-
creased.

In Fig. 18 we show the phase diagram in the plane U-u
for different values of the position of the p band. Upon in-
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hole doping
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FIG. 19. (Color online) Top panel: {(m3)?) (circles) and ((mf,)z)
(squares) as a function of doping & for ,,=0.9 and U approxi-
mately two times larger than the threshold value to have a Mott gap
(tip in the V shape of the phase diagram) and €,=-1,-2,-3 (full,
dashed, and dotted lines). Explicitly: €,=—1 and U=2, €,=-2 and
U=0.8, €,=-3 and U=0.4. Bottom panel: {mmy) as a function of
doping 6 for the same values of the parameters as in the top panel.

The results are obtained with 7=0 ED star geometry calculations.

creasing A, the threshold value of U to obtain the Mott
insulator region becomes smaller. This results from the fact
that the interaction U is competing with a decreasing band-
width ~t12,d/ A. In addition, as expected, the V-shaped bound-
aries of the Mott insulator become more symmetric at larger
AO.

To verify whether the character of the transition can be
modified on the hole-doped side, we observe the temperature
behavior of the particle number, n. Upon increasing A, we
find that n versus w curves becomes more temperature de-
pendent, which is a first indication of the possible realization
of the Hubbard model scenario also in the hole-doped side.
However, due to the reduction in the effective bandwidth
teff~t12]d/ A, the temperature below which we may observe
the hysteresis cycle in the n versus u curves should be ex-
tremely low. With our current numerical capabilities we were
only able to obtain evidence of a small hysteresis at A,=3.

To complete this study we also computed the local mo-
ment of p and d electrons upon increasing A,. In Fig. 19 we
plot the moments (top panel) and the magnetic binding be-
tween the p and d electrons (bottom panel) as a function of
doping for several values of the position of the p band. In the
Mott insulator (6=0), upon decreasing the position of the p
band, ((m;)z) is decreased and ((m%)?) is increased. This is
because the mix-valence character of the electrons is re-
duced, since the p band becomes essentially full with n,
—2 as g,——%. Thus the doping has just a small effect on
((mp)z) On the other hand, upon hole doping, the d local
moments decrease more rapidly when the p band is deep in
energy. As a result, the magnetic correlation between the p
and d electrons, (m,mg), shown in the bottom panel of Fig.
19, is expectedly punished by higher values of A,. This is
fully consistent with the mentioned recovery of the mapping
of the PAM onto the Hubbard model. Therefore we can un-
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derstand that for lowering in energy the position of the p
band the mapping of the PAM onto the HM should hold.

V. CONCLUSIONS

In this paper, using DMFT, we considered the doping-
driven Mott transitions of the periodic Anderson model when
it is set in the Mott-Hubbard parameter regime. We discussed
the transitions with respect to reference case of the well un-
derstood scenario realized in the single band Hubbard model.

In contrast to the latter, the PAM has a qualitatively dif-
ferent metal-insulator transition for particle or hole doping.
Upon particle doping of the Mott insulator, the metallic state
is reached through a first-order transition, which is analogous
to that of the Hubbard model. However, upon hole doping
the Mott insulator, there is a continuous (i.e., second-order)
insulator-metal transition through a quantum critical line in
the parameter space U-u.

We argued that the hole-doped metal has delocalized
Zhang-Rice singlets that fail to build substantial superex-
change as compared to the Hubbard model (and particle-
doped case). In fact, we discussed the qualitative differences
between these two transitions showing that it is not due to
the physics of the “exhaustion” but indeed is related to the
magnetic interaction that develops between the two species
of electrons in the model. Our results on the magnetic corre-
lation between the d and the p electrons (see lower panel of
Fig. 17) show that upon particle doping the p electrons per-
mit the charge fluctuations and the delocalization of the d
electrons without magnetic p-d coupling. On the hole-doped
case, in contrast, the system favors the formation of singlet
pairs p-d.

Upon increasing the charge-transfer energy, we could re-
cover the mapping of the PAM to the Hubbard model for the
hole-doped case. This signifies that a substantial mix-valence
character was the key ingredient for the realization of the
second-order transition in this model.

Our findings may be important looking at the present ef-
fort to apply DMFT calculation in regard to real
materials.’>>3 Those studies usually carry the implicit as-
sumption of the Hubbard model as the underlying low en-
ergy Hamiltonian of complex systems. Our work indicates
that the Hubbard model scenario may be questionable when
the hybridization of the correlated band with another band is
high. In particular, our work is relevant for the analysis of the
metal-insulator transitions of transition-metal oxides that
usually have oxygen orbital mediating the delocalization of
the d correlated electrons of the transition metal. Therefore
the role of the oxygens band and their hybridization with the
localized band should be explicitly considered in the inves-
tigation of the Mott transition.
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